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The authors thank Dr. Lowrey for his discussion, and for pointing out the numerical error in Fig.
2[1]. They agree with that the results obtained by the lumped mass conventional finite strip
(matrix) method and the lumped mass finite strip-difference calculus technique are the same.

It is well known that the convergence of the consistent mass approximation is faster than the
lumped mass approximation. The authors do not agree with the discusser's statement that in the
conventional finite strip method the increased accuracy (of the consistent mass approximation)
may be achieved with little increase in computation time (over the lumped mass approximation).
Since the distributed mass, lumped as concentrated line masses at the strip interfaces, exerts only
lateral inertial forces and no inertial moments during free vibration, only the lateral deflections at
the interfaces, Wj, contribute to the dynamic degrees-of-freedom of the system. The rotations at
the interfaces (OJ) are dependent on these independent degrees-of-freedom. Hence, under the
lumped mass approximation, we essentially solve a (Ns -1)t degrees-of-freedom system, where
N s is the number of strips. In the consistent mass approximation, the rotations also contribute to
the dynamic degrees-of-freedom, and we solve a (2Ns ):j: degrees-of-freedom system. The
mathematical reduction of the eigen-analysis of the (2Ns )th order matrix to the eigen-analysis of
the (Ns - l)th order matrix is given in Appendix A. Since the order of the matrix involved is
reduced, the computation time for the lumped mass approximation is considerably less than that
for the consistent mass approximation.

Since the authors' finite strip-difference calculus technique presented in the paper was based
on the lumped mass approximation, it was compared with the conventional lumped mass finite
strip method. Recently the authors have extended the technique for the consistent mass
approximation also (Appendix B). The results given in Table 1 are practically identical with the
conventional consistent mass finite strip method results given by discusser.

Summing up, the conventional finite strip (matrix) method and the authors' finite
strip-difference calculus technique give identical results, for both the lumped mass and the

Table 1. Consistent mass finite strip-difference calculus results
for the example plate

N, 2 2 wi3 2 2
Wll WI2 WI4 WIS

2 152·266
3 152·213 392·257
4 152-205 390·477 1048·35
5 152·203 389·980 1037·17 2511·07
6 152·202 389·802 1032·95 2473·59 5331·04
8 152·202 389-688 1030·19 2447-84 5192-42

10 152·202 389·658 1029-42 2440·48 5150·62
20 152·202 389·638 1028·92 2435·56 5122·05

Exact 152·202 389-636 1028·88 2435·23 5120·07

tThe lateral deflections at the interfaces I, 2, 3 ... (N, - I). (The deflections at 0 and N, are zero because of the simply
supported boundary conditions).

*(N, - 1) lateral deflections plus the rotations at the interfaces 0, I, 2 ... N,.
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consistent mass approximations. The advantages of the authors' method are: (a) It does not
involve any matrix operations, and requires far less computational work, (b) the computational
work involved is independent of the number of strips, and (c) the analytical form of the solution is
best suited for parametric studies on the convergence and accuracy of the finite strip approach.
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APPENDIX A
The equations of motion of the finite strip assemblage are (from eqn (24) of [1]),

([K] - w'[M]){o) 0 (I)

where {o} is the displacement vector of order (2N, ), and [K] and [M] are stiffness and mass matrices of the order (2N,), The
matrix eqn (1) can be partitioned into

where w is the frequency of vibration, {o.. } is a (N, - 1)th order vector containing the lateral deflections at the strip interfaces
1,2,3"" (N, -1), and o. is a (N, + I)th order vector containing the rotations at the strip interfaces 0,1,2",. N" (The
lateral deflections at the interfaces 0 and N, are zero because of the simply supported boundary conditions).
K...., K..., , . ,etc. are submatrices of the appropriate order. Because of the nature of the lumped mass matrix (eqn (20) of [1]).
eqn (Z) reduces to,

where p, mass per unit area, d ~ width of strip and I is a unit matrix, Equation (3) canbe written as two matrix equations,

([K.... ]- p,zdW'[I]){8w ) + [K... ]{o.} ~ {O}

UK." How} + [K•• ]){o.} ~ {OJ

Substituting eqn (4b) in eqn (4a) gives

where

(3)

(4a)

(4b)

(5)

(6)

So, the frequency parameters [(p,d/2)w'] are the eigenvalues of the (N, -I)th order square matrix [K*].
In the consistent mass approximation, where the mass matrix cannot be partitioned into unit and null matrices as in eqn

(3), the frequency parameters w2 are obtained from eqn (1) as the eigenvalues of the (2N, lth order square matrix UWT'[K].

APPENDIX B
The consistent mass matrix for a typical strip, based on the deflection functions defined by eqns (I) and (Z) of [I] is:

[m]

l3i'd
..,

35
Symmetric

lli'd' i'd'
2iO 105

9p,d 13p,d' 13p,d
70 420 35

-13p,d' - 3p,d 3 -llp,d' p,d 3

420 420 210 105

Similar to eqn (31) of [l], the mass coefficients also satisfy the relationships,

In l1 = m3J

m1:::;:: m 21 ~ -m34 -nl.n
ml:'l=m3\

m14:;:: m 41 == -m23 -In32

mn :;:: m44

mZ4= m42

(8)
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Substituting eqns (7) and (8) in eqns (30a) and (30b) of [I], gives

[(k 13 - w2m13)(E-1 +E) +2(k" - w2mll)]w, +[(k I4 - w2mI4)(E - E-')]O; = 0

and

Substituting eqn (9b) into eqn (9a)

2 _I 2 [(k I4 - w2m'4)2(E-' - E)2] - 0
(k 13 - w m13)(E +E) +2(kll - w mil) +[(k24_ w2m24)(E +E I) +2(k22 _ w2m22)] Wi - ,

For a plate, simply supported at x =O(i =0) and x = I(i = N,), Wi may be assumed to be

~ A ' n'ITi
Wi = "" n SID]\[,

n=I.2 $

Substituting eqn (11) in eqn (10) gives

[

2 '2 n'IT 4 2 '2 n'IT 2 2k ' 2 n'IT]

[ ]

k,.SID -N +w m'4SID -N - w '4m,.slD-Nn'IT k 2 n'IT 2 s s s
k13coS-N + II-W m13cosN -m"w - [ ], , k n'IT k 2 n'IT 2

24cosNs + 22-W m24cosNs -w m22

=0 for n = 1,2, .. ,

Equation (12) can be rewritten as a quadratic equation in w2
,

Aw4 +Bw2 +C = 0

where,

B = [ (2k14m14 sin2
;;,) - (k24 cos ;;,+k22)(ml' cos ;;,+m,,)

- (k13 cos ;;,+k,,)(m24 cos ;;,+m22) ]

C = [(k13 cos ~7+kll )(k24 cos ~~+k22 ) - (k~4 sin
2
;;,)J.
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(9a)

(9b)

(10)

(II)

(12)

(13)

(14)

Solution of eqn (13) gives two roots for w2
, Numerical calculations show that the lower root corresponds to the required

w2, The example plate is analysed using the present method, and the results are presented in Table 1. They are practically
identical with the conventional consistent mass finite strip results given by the discusser.


